Musical Instrument

REPORT

Friday 10:00 lab
Date: 07.12.2012
Team:
A.B.C.
Telecommunications and Computer Science
IFE 7th semester

Subject chosen as elective course

Devices used:

LPCXpresso Board G with LPC1343 Cortex-M3
LPCXpresso Board C with LPC1343 Cortex-M3
No external modules used.

Interfaces used:

GPIO, I12C, SPI, UART

Devices used:

Accelerometer, light sensor, OLED, speaker, XBee, button, rotary encoder,
7-segment display



Contents

1. Project desCription.....cccoeeeeevueeeeieiiiieeeeeiieee e eeeree e eeaees 3
1.1. General description....cccoovuveeeiiieiiiieeeeece e, 3
1.2. Playing the instrument..........ooieiiiiiiiiiiieiceeceee, 3
1.3, InStrument MOdes........coovviiiiiiiiiiiiiiiiee e 4
1.3.1. Continuous mode —mode ‘O.......ccevvveviiiiiiiiieneeeeneeenn. 4
1.3.2. Musical scale mode —mode ‘1'........ccoevrviiiiiiiiiiiennnnn. 4
1.4. Boards playing in unison (ZigBee) .......cccvvvvvvveerreerrnnnnnns 5

2. Peripherals and interface configuration .......c..c..ccovvuenn. 6
2.0, GPIO e 6
2.2 L2 bbb 8
2.3 S b 8
2.4, UART (ZIZBEE) evvvueeiieiiieiiieeee et 9
2.5. Accelerometer.......iiiiiiiiiieee 10
2.6. Light SENSOr ..., 12
2.7. PWM TIMeI .. 12
2.8. Button debounce timer.....ccceveviiiiiiiiiiiiiiiiicccceeee, 13

3. Failure Mode and Effect AnalysiS.......cccevveeeeviiiineereinnnnnnn. 14

A, REFEreNCEeS ..covviiiiiiiiiiiiii e 15

5. Otherinformation.........coooveeiiiiiieiii 16



1.Project description

1.1. General description

The project is an embedded musical instrument which introduces a novel and unique
way of controlling sound. The instrument is played by hovering your hand over the
board and rotating the board to change the sound pitch. An addition is the ability to
make another board play in unison with the user, but an octave lower, using wireless
communication.

The program offers multiple other features such as displaying the currently played
frequency in Hertz on the OLED display, switching the mode of the instrument by
pressing a button, displaying the current instrument mode on the 7-segment display.
Volume can also be controlled by means of a rotary encoder on both boards. The
other board’s sound can be enabled or disabled with a button.

1.2. Playing the instrument

Playing the instrument is very simple and intuitive. Hovering your hand above the
board limits the light coming to the light sensor on the board. When the value of light
intensity is lower than the predefined threshold value — sound is emitted. In normal
room light conditions this means hovering the hand a few centimeters above the
board. When the hand is removed, sound is stopped. The pitch of the sound will be
the highest value from the predefined range when the board is lying flat. It will be
lowest when the board is vertically oriented with respect to the floor. Rotating the
board changes the pitch of the sound in real-time. The range is 50-1050Hz for
continuous mode (mode ‘0’) and about 523.25Hz to 1046.50Hz for musical scale
mode (mode ‘1’). The value of currently played frequency is displayed on the OLED in
Hertz. Volume may be increased or decreased in small steps using the rotary encoder
(clockwise turn — increase volume). Pressing the wake-up button on the board
switches the instrument mode. The current mode is displayed on the 7-segment
display by means of a 0 or 1 digit (O — continuous mode, 1 — musical scale mode).



1.3. Instrument modes

1.3.1. Continuous mode — mode ‘0’

The first mode, mode ‘0’, is continuous frequency mode. In this mode, frequency
changes continuously depending on the values read out from the accelerometer.
The frequency can be any integer value from the predefined range. This mode
was the simple to implement. Possible discrete accelerometer values (from 0G to
1G) are mapped onto our frequency range, to cover the whole range. Only the Z
axis (signed byte) is read from the accelerometer. When the board is lying flat,
the value is maximum (Earth’s gravitational acceleration: 9.81 m/s”2). This value
is 64 in the decimal system, half of the accelerometer positive range (full range is
2G). When the board is rotated at a steady rotational speed along one of the
axes, the changes of Z values are linear (gravitational component of Z decreases
linearly) so the frequency changes are also linear. It may be noted that when we
shake the board upwards, the frequency gets higher and the sound played is
higher than the maximum value of our range (as 1G acceleration corresponds to
maximum frequency which is 1050Hz). Higher values are allowed, but low
frequencies are always rounded to 50Hz. Negative accelerometer readouts are
ignored.

1.3.2. Musical scale mode — mode ‘1’

The second mode, mode ‘1’ is a bit more complex than mode ‘0’. It rounds the
frequencies to nearest frequencies in a pre-calculated musical scale note table.
The musical scale used is twelve-tone equal temperament scale. Every pair of
adjacent notes in this scale has an identical frequency ratio. Each octave is
divided into 12 semitones. The frequency of a note is exactly twelfth root of two
times the frequency of the previous semitone. The program precalculates these
values for 13 semitones (one octave + 1) according to this formula, rounds them
to integers, and puts then in an integer array. Then when an accelerometer value
is read out, it is mapped to an integer frequency from the range (same as in
continuous mode), but then it is rounded to the nearest value from this array.



The entire array is scanned and the algorithm tries to find the smallest difference
between the given value and values from the array. It then returns the closest
value from the array. This way, the instrument plays only notes from the musical
scale, the same scale used in the piano and other instruments.

There is one more difference between this mode and the continuous mode. In
this mode, | wanted to map the entire range of accelerometer values to one
octave, from C5 to C6. Frequency of C5 is 523.25Hz, so an offset is added to make
C5 the lowest possible frequency (lowest acceleration value). The fact that the
equal temperament scale is a geometric series causes a slightly non-linear
distribution of notes in the acceleration range.

1.4. Boards playing in unison (ZigBee)

The last piece of functionality that has been implemented is wireless communication
between two boards, making them play in unison, one playing at an octave lower. A
simple one-way communication protocol was devised for this purpose. Each board
contains an XBee module socket which uses UART to communicate with the
processor. The main board is the instrument controlled by the user and the other
board lies flat and listens to ZigBee commands coming from the main board.
Commands are packed in frames. Each frame has a specific start and end byte.
Received frames that do not contain proper start and end bytes are discarded. There
are two types of frames: commands and frequency data. A command tells the
receiver board to start or stop playing (synchronized with the user blocking and
unblocking light from the sensor) and the frequency data frame contains a high byte
and low byte of frequency currently played by the main board. This frequency is then
divided by 2 (making it exactly an octave lower) and played by the receiver board,
provided that the previously received command was to start playing and that the
button was set to enable playing as well. The button flag variable and remote enable
flag are ANDed, so sound can be disabled either by button or by a remote “stop
playing” command.

Each frame is always 4 bytes long. The possible frame byte values are shown below.
#define FRAME_START 0x5C

#define COMMAND_PADDING 0xC1

#define START_PLAYING OxE2

#define STOP_PLAYING OxA7

#define FRAME_END Ox9A



Example frames:
5C C1 E2 9A - start playing
5C C1 A7 9A - stop playing

5C 04 10 9A - send 1040Hz as frequency to the other board (will be divided by two to
play an octave lower)

The baud rate for the communication is set as 9600bps. The frequency commands
are sent once every few iterations of the main loop, as it turned out they cannot be
sent as often as every iteration, as it causes framing errors and RX FIFO overflow
errors at the receiver. The result is a lag between the change of frequency at the
main board, and at the receiver board, which is less noticeable in the musical scale
mode of the instrument.

The range of wireless communication has been tested to be about 3 meters, due to
the lack of external antenna on one of the XBee modules.

Peripherals and interface configuration

2.1. GPIO

Various general purpose input and output pins are used in the project. The procedure
for initializing the GPIO block is as follows.

First enable the AHB clock for the GPIO block:

LPC_SYSCON->SYSAHBCLKCTRL |= (1<<6);

The project uses GPIO PORT1 interrupts, this line enables them:

NVIC_EnablelRQ(EINTL_IRQn);

Next is configuration of the pins going to the audio amplifier:

GP10SetDir( PORT3, 0, 1 ); //LM4811-clk

GP10SetDir( PORT3, 1, 1 ); //LM4811-up/dn

GP10SetDir( PORT3, 2, 1 ); //LM4811-shutdn

GP10SetDir( PORT1, 2, 1 ); //PWM output

GP10SetvValue( PORT3, 0, 0 ); //LM4811-clk

GP10SetvValue( PORT3, 1, 0 ); //LM4811-up/dn

GP10Setvalue( PORT3, 2, 0 ); //LM4811-shutdn
LPC_10CON->JTAG_NnTRST_P101_2 = 0x13; //Pull-up resistor enabled,

selects function CT32B1_MAT1




Pins PIO3_0, PIO3_1 and PIO3_2 enable controlling of the gain of the amplifier. Clk is
the clock signal, up/down is 0 or 1 depending on whether we want to increase or
decrease volume, and shutdown disables the output of the amplifier. They are all
configured as output pins. The last line is to configure the PIO1_2 pin in the IOCON to
set it as a PWM output of Timer32B1 MAT1 (and enable pull-up resistor). This will
make it change the pin’s state every time the Timer reaches the match value. The
PIO1_2 pin is connected to the amplifier input, and the amplifier’s output is
connected to the speaker. There is also low-pass filter circuitry on the path of the
audio signal.

We also want to configure the GPIO interrupt for the wake-up button:

NVIC_EnablelRQ(EINT1_IRQN);

GP10SetDir(PORT1,4,0); //set button as input
GP10SetInterrupt(PORT1, 4, 0, 0, 0 ); //set interrupt from wakeup
button, PORT1 4, falling edge

GP10IntEnable(PORT1,4); //enable PORT1 4 interrupt

The interrupt handler for the falling-edge GPIO interrupt:

void PIOINT1_IRQHandler(void) //handler for GPIO interrupt (button)

it (GP10IntStatus(PORT1,4)) //if interrupt caused by the wake-
up button

if (debounceFlag == 0) {
debounceFlag = 1; //disable repeated ISR calls (due
to bouncing) until timer expires
LPC_TMR16BO->TCR = 0x02; //reset and stop timer
LPC_TMR16BO->TCR = 0x01; //start timer

}

}
GP10IntClear(PORT1,4); //clear interrupt
}

The interrupt is set to falling-edge triggering. The button shorts the line to ground
when it is pressed, so a button press should trigger a falling-edge interrupt. The
handler checks if the interrupt came from the wakeup button pin, if yes then it sets
the debounceFlag to disable repeated ISR calls for some time, due to bouncing. The
debounce timer is started. When it matches a set value then it checks the button
state. If the button is still pressed, the debounceFlag is switched to 0 again, enabling
further interrupts. If not, then it means it was just bouncing that had caused the
interrupt. The timer match value is set to correspond to about 80ms.

It has to be noted that for the button to work, the J28 jumper must be removed.

The last device using GPIO pins it the rotary encoder:

GP10SetDir( PORT1, 0, 0 ); //set as outputs
GPI10SetDir( PORT1, 1, 0 );



The rotary encoder is read out at each iteration of the main loop. If there is a rotation
detected, then the amplifier gain is changed using appropriate pins and simply
clocking in bits.

2.2. 12C

The 12C bus is used by two devices: light sensor ISL29003 and accelerometer
MMA7455. Each uses a different 12C address.

Proper registers need to be configured:

LPC_SYSCON->PRESETCTRL |= (Ox1<<1);
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<5);
LPC_IOCON->P100_4 &= ~Ox3F; /* 12C 1/0 config */

LPC_IOCON->P100_4 |= Ox01; /* 12CSCL */
LPC_IOCON->P100_5 &= ~Ox3F;
LPC_IOCON->P100_5 |= Ox01; /* 12C SDA */

The first line deasserts the reset signal to the 12C block.

The next line enables the AHB clock for 12C.

The last four lines configure the IOCON to enable these two pins to work as SCL and
SDA for 12C.

12C is configured as master by default.

Last step is enable 12C interrupt and 12C itself.

NVIC_EnablelRQ(12C_IRQn);
LPC_12C->CONSET = 12CONSET_I2EN;

2.3. SPI

SPI (SSP) is used by the shift register controlling the 7-segment display (one digit) and
it is also used by the OLED display.

SYSCON and IOCON configuration for SPI:

LPC_SYSCON->PRESETCTRL |= (O0x1<<0);
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<11);

LPC_SYSCON->SSPCLKDIV = 0x02; /* Divided by 2 */
LPC_10CON->P100_8 &= ~0x07; /* SSP 1/0 config */
LPC_I0CON->P100_8 |= 0x01; /* SSP MISO */
LPC_I10CON->P100_9 &= ~0x07;

LPC_I0CON->P100_9 |= 0x01; /* SSP MOSI */

The first line deasserts the reset signal to the SPI block. The next line enables the AHB
clock for SPI. The third line makes the SPI clock half the PCLK clock. The last four lines
set the IOCON to use two pins as MISO and MOSI for SPI.

The following lines select the SCK pin that will be used and enables it as SCK.

LPC_10CON->SCKLOC = 0x01;
LPC_I10CON->PI102_11 = 0x01;/* P2.11 function 1 is SSP CLK



The following lines select a GPIO pin as chip select

LPC_I0CON->PI100_2 &= ~0x07; /* SSP SSEL is a GPIO pin */
/* portO, bit 2 is set to GPI0O output and high */

GP10SetDir( PORTO, 2, 1 );

GPl10Setvalue( PORTO, 2, 1 );

We need to configure the format of the SPI communication:

/* Set DSS data to 8-bit, Frame format SPI, CPOL = 0, CPHA = 0, and
SCR is 15 */

LPC_SSP->CRO = 0x0707;

Clock is low between frames and data is latched on first clock transition. Frames are
8-bit.

Set clock prescaler, master mode.

/* SSPCPSR clock prescale register, master mode, minimum divisor 1is

0x02 */
LPC_SSP->CPSR = 0x2;

/* Enable the SSP Interrupt */
NVIC_EnablelRQ(SSP_IRQN);

/* Device select as master, SSP Enabled */

/* Master mode */

LPC_SSP->CR1 = SSPCR1_SSE;

/* Set SSPINMS registers to enable interrupts */
/* enable all error related interrupts */
LPC_SSP->IMSC = SSPIMSC_RORIM | SSPIMSC_RTIM;

2.4. UART (ZigBee)

UART is used to talk to XBee modules. The XBee modules have default configuration
and act as a wireless extension of UART. In this state, only point-to-point
communication can be achieved. Baud rate is set to default which is 9600bps.

Initial UART configuration:

NVIC _DisablelRQ(UART_IRQN);

LPC_IOCON->PIO1_6 &= ~0x07; /* UART 1/0 config */

LPC_I0CON->P101_6 |= Ox01; /* UART RXD */
LPC_I0CON->P101_7 &= ~O0x07;
LPC_I0CON->P101_7 |= Ox01; /* UART TXD */

/* Enable UART clock */
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<12);
LPC_SYSCON->UARTCLKDIV = 0x1; /* divided by 1 */

LPC_UART->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
Fdiv = (((SystemFrequency/LPC_SYSCON-
>SYSAHBCLKDIV)/regVal)/16)/baudrate ; /*baud rate */

LPC_UART->DLM = Fdiv / 256;

LPC_UART->DLL = Fdiv % 256;

LPC_UART->LCR = 0x03; /* DLAB = 0 */

LPC_UART->FCR = 0x07; /* Enable and reset TX and RX FIFO. */

NVIC_EnablelRQ(UART _IRQN);



LPC_UART->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART RX and
TX interrupt */

UART is configured the same way on both boards. The default communication format
is 8bits, no parity, 1 stop bit and no flow control.

One important remark is that the UART pins from the microcontroller are multiplexed
by an external multiplexer chip. By default the UART signals are forwarded to the
UART to USB chip, for communication with a computer. To route the signals to the
XBee module, we need to remove jumper B from J7.

2.5. Accelerometer

The accelerometer used is a three-axis digital output accelerometer which uses 12C.
We only use one axis — axis Z, because it is the easiest option as it always has some
acceleration (full of partial component of gravitational acceleration pointing
downwards) without the need to shake it. For readouts, we use only register ZOUT8
which contains a sighed 2’s complement 8-bit value of the acceleration (maximum is
2G). 0x00 is 0G, Ox7F is 2G and 0x80 is -2G. Default configuration is 2G range and
MEASURE mode. For our purposes, there is no need for additional configuration of
the accelerometer.

The accelerometer value is read every iteration of the main loop. The readouts from
the accelerometer oscillate very rapidly, despite the built-in low-pass filter. When the
board was lying still or held still, the sound would still vary its pitch very fast. To
correct this, | have implemented a low-pass filter for accelerometer readouts. To
design this filter, | used an online coefficient calculator (link here: http://www-
users.cs.york.ac.uk/~fisher/mkfilter/trad.html). The website requires the user to
input type of filter (Butterworth/Bessel/Chebyshev), order of the filter, cut-off
frequency and sample rate. It then returns ready C code for the filter with coefficient
values and gain value. These values are all floating-point values, but still the
calculations do not decrease the operation speed of the program noticeably, despite
lack of FPU on the processor. | chose a third order Butterworth filter. The cut-off
frequency required some tweaking. | settled for 3Hz, but it is only 3Hz with respect to
150Hz sample rate that | have put in the form. This sample rate was a wild guess, in
reality | think the cut-off frequency may be around 8-10Hz. To determine the sample
rate, the time of execution of one iteration of the main loop would have to be
measured, but it couldn’t be a good measurement because not every iteration takes
the same number of cycles and also any further evolution of the main loop would
result in the change of the sample rate. | decided not to measure it because the cut-
off frequency was already determined by trial and error and the 3Hz value is
sufficient.

The algorithm for converting the accelerometer value to a frequency is as follows.

10



We need two multipliers for two instrument modes, and a reference zFlat value,
which is the value read out in the beginning of the program when the board is
assumed to be lying flat with the highest z value possible.

acc_read(&x, &y, &z); //initial accelerometer readout

zFlat = z; //zFlat is z when board is lying flat parallel to ground
continuousMultiplier = MAX_FREQUENCY_CONTINUOUS/zFlat; //multiplier
to get full sound range between 0-1000hz

scaleMultiplier = MAX FREQUENCY_SCALE/zFlat; //multiplier for scale
mode (with offset)

Before the main loop, we read z, assign it to zFlat (treating it as highest possible z
value) and calculate the multipliers. Z axis accelerometer readouts in the main loop
will be multiplied by a multiplier for the proper mode and this will get us the
frequency to be played. We assign MAX_FREQUENCY_CONTINUOUS/zFlat to the
continuous multiplier. In effect we calculate the z/zFlat ratio and multiply it by the
maximum frequency that we want(in this case 1050Hz).

For the musical scale mode it is a bit different, we multiply the ratio by
MAX_FREQUENCY_SCALE which is MAX_FREQUENCY_CONTINUOUS-OFFSET. We
need to subtract that offset because we will be adding it later to the readouts, to get
510Hz (offset) for acceleration = 0, resulting in a range from 510Hz to 1050Hz.

In the main loop, we read the z value, and if it is greater than 0 then we check the
instrument mode. For continuous mode we take z*continuousMultiplier as an input
frequency to the low-pass filter, and then take the return value of the filter as the
frequency to be played. For musical scale mode, we take z*scaleMultiplier, add
OFFSET to it, pass it to the filter, take the return value and round it to the closest
musical scale frequency. Lastly we save it into the global variable holding the
frequency to be played.

acc_read(&x, &y, &z); //read accelerometer
if (z>0) //we consider only positive values of z
{
it (playingMode == 0)
frequency = (uint32_t)(filterAcc(
(float)z*continuousMultiplier)

//frequéncy will usually be between 0 and 1000Hz
else
frequency = roundToMusicalScale(
(uint32_t)FilterAcc(
OFFSET + (float)z*scaleMultiplier

)
);

//frequency is clipped to musical scale

11



2.6. Light Sensor

The light sensor on the board has high sensitivity, selectable gain and range and a 16-
bit ADC. It uses I12C for communication. Before the while loop, the command and
control registers of the sensor are set via 12C. In the command register we enable the
ADC, and we set the ADC work mode to “Difference between diodes (I1 - 12) to signed
15-bit data”. The sensor contains two photodiodes. Diodel is sensitive to both visible
and infrared light, while diode2 is mostly sensitive to infrared light. By taking the
difference we should eliminate most of the infrared light influence. Lastly we set 8bit
resolution of the ADC because we do not need a high resolution, just enough to
detect a major drop or rise in light intensity. In the control register, we set the range
to 0 to 1000 lux.

In the main loop, we first read register 4 of the sensor (low byte of light level
readout) and then check if this light level is below or above some threshold. The
threshold is set to 0x12 for hand hovering and this value was discovered by trial and
error. Too high threshold creates false positives, while too low a threshold makes you
block the light coming to the sensor completely.

| decided to implement a low-pass filter for the light level readouts, just like in case of
the accelerometer, but with a cut-off frequency of 10Hz (with respect to 150Hz
sample rate). This helped with the oscillations and false positives that happened
before.

When the light level is below the threshold and previous readout was above the
threshold, it means that a hand or some object is obstructing the light and we need
to enable sound output (precisely: start the timer for PWM), send a ZigBee command
to the other board to start playing, and change the isPlaying flag. When the light level
is above the threshold, we do the opposite.

2.7. PWM timer

A 32-bit timer of the microcontroller is used for PWM output to generate square
wave sound. The duty cycle is 50% and needs not be changed. Two match values are
used, MR1 and MR3. Match channel 1 is the duty cycle value, and match channel 3 is
the PWM cycle value (period of the square wave). Every match on channel 3
generates an interrupt. The register configuration is below:

void InitPWMTimer() //timer for square wave generation
{
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<10); //enable clock for Timerl
LPC_TMR32B1->PR 0; //prescaler O
LPC_TMR32B1->1IR OxFf; //reset interrupts
LPC_TMR32B1->MR1 0; //initial duty cycle value

12



LPC_TMR32B1->MR3 = O; //initial pwm cycle value

LPC _TMR32B1->TCR = 0x2; //reset timer

//LPC_TMR32B1->MCR = (1<<10); //reset on match MR3 (pwm cycle)
LPC_TMR32B1->MCR = (1<<9); //interrupt on match MR3 (pwm cycle)
LPC_TMR32B1->CTCR = 0x0; // timer mode

LPC_TMR32B1->PWMC = Ox2; //PWM enable for MAT1

//USE MATCH CHANNEL 3 TO SET PWM CYCLE
NVIC_EnablelRQ(TIMER_32_ 1 IRQn); //enable interrupt
LPC_TMR32B1->TCR = 0x0; //release timer reset

}

The timer is started and stopped according to the light level. In the ISR of the timer
we have the following sequence of operations. First of all we check if it is the
interrupt from MR3 (end of PWM cycle). If it is so, then we check if the most recently
set frequency (global variable) is higher than 50. If so, then we use sprintf to convert
the value of this frequency to a string. This string will later be passed in the main loop
to the OLED printing function, which was moved there because it is not time critical
so it should not be in a frequently triggered interrupt.

Most importantly, though, we set the new duty cycle and PWM cycle frequency of
the timer by calling setPWM(frequency) function. For converting the frequency value
to number of ticks, 72MHz clock is assumed. The duty cycle tick value is always half of
the PWM cycle value. After setPWM(frequency) we restart the timer and leave the
ISR. In effect, we have a PWM output which can change its frequency after each
cycle, assuming that the frequency variable has been changed in the main loop since
the last PWM cycle.

2.8. Button debounce timer

A 16-bit timer is used for the purpose of debouncing the button. It makes a small
delay before re-enabling the button interrupt (more precisely: re-enabling the
possibility to toggle the instrument mode). The initialization is below:

void initDebounceTimer() //timer for button debouncing delay

{
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<7); //enable clock for timer
LPC_TMR16BO->PR = 2048; //prescaler
LPC_TMR16BO->IR = Oxff; //reset interrupts
LPC_TMR16BO->MRO = 2812;
//initial value around 80ms (2812*2048 ticks)
LPC_TMR16BO->TCR = 0x2; //reset timer
LPC_TMR16BO->MCR = (1<<0); //interrupt on match MRO
LPC_TMR16BO->CTCR = Ox0; //timer mode
NVIC_EnablelRQ(TIMER_16_0_IRQn); //enable timer interrupt
LPC_TMR16BO->TCR = 0x0; //release timer reset

}

The prescaler times the MRO value gives us enough ticks to last around 80ms, this value
was chosen experimentally. 80ms provides a delay much longer than the bouncing duration
of the button.

13



In the GPIO interrupt for the button, we start the debounce timer and when it matches
the MRO value then we check the status of the button pin. If it is still pressed (still 0) then we
allow to toggle instrument mode and also change the value on the 7-segment display.
Otherwise, we just reset the timer and exit the ISR.

3.Failure Mode and Effect Analysis

The realized project depends on some devices for proper operation. Some pieces of
functionality are an optional addition to the project and their failure would not render
the project unusable. However, there are some scenarios in which the project would
simply cease to work and would become useless. In the table below there are a few
items and functions which will be considered in failure analysis. In the left column there
is the item name, and in the right column the gravity of this item’s failure.

Item/function Severity
Microcontroller Critical
Power supply Critical
Speaker Critical
Accelerometer Critical
Light Sensor Critical
Button Medium
Rotary encoder Negligible
OLED display Negligible
7-segment display Negligible
XBee Medium

The project heavily depends on proper operation of the microcontroller, power supply
and devices such as speaker, accelerometer and light sensor. The speaker (along with the
amplifier) and the light sensor are critical because otherwise no sound can be played.
The accelerometer is necessary as well to set the frequency of the played sound. If
readouts from the light sensor or accelerometer become corrupt, the program would
show undefined behavior. The power supply must also be present because there is no
backup power and no battery installed. As for other functionalities, devices such as XBee
and the button are not critical but contribute greatly to the project. The functionality
would be severely weakened without those two elements. Lastly, there are devices such
as rotary encoder, OLED display, and 7-segment display which provide just an additional
non-critical functionality such as displaying frequency, mode and changing the volume.

As for detecting system failure, a problem with the power supply may become apparent
when observing LED diodes, when they blink when they should not, or do not light up at
all, this might indicate a problem with the power supply or cable. Power-related faults

14




may also arise when a short in the system is caused, for example from power rail to
ground. This may happen either by putting a jumper in the incorrect place, or dropping a
piece of metal on the board.

A microcontroller failure would probably be easy to detect, as most likely it would be a
complete failure of the chip, not just a small part of the chip.

As for the speaker, it could probably be very easily replaced in case of failure. It would be
harder to replace the amplifier but with proper equipment it could be done.

As for the accelerometer and light sensor, their failure would probably be very apparent
in this project, as they are critical components of the system. It would be difficult to
resolder the chips, but not impossible.

A failure concerning the XBee module would also be apparent because it would probably
cause cease of the communication between boards. Replacing the module is easy as
there is a standardized socket on the board.

The 7-segment display, button and rotary encoder can probably be very easily replaced,
but their functioning is not critical to the operation of the system.

If the OLED display failed, cracked, or started to display random pixels or spots, it would
be expensive to buy a new one and replace it, but it contributes so little to the project
that | do not think it would be necessary.

4.References
http://www-users.cs.york.ac.uk/~fisher/mkfilter/trad.html

http://www.phy.mtu.edu/~suits/notefreqgs.html

http://www.intersil.com/content/dam/Intersil/documents/fn74/fn7464.pdf

http://gadgetgangster.com/scripts/displayasset.php?id=431

http://www.zsk.p.lodz.pl/~morawski/SCR&ES/Guides&Schematics/LPCXpresso Base Bo
ard revA.pdf

http://www.zsk.p.lodz.pl/~morawski/SCR&ES/Guides&Schematics/LPCXpresso BaseBoar
d rev B Users Guide Rev A.pdf

http://www.nxp.com/documents/user manual/UM10375.pdf

15



5.0ther information

The project uses two boards, and two programs. | did not explain the operation of the
second program (for the receiver board) because its only features are waiting for ZigBee
commands, disassembling received frames, changing the volume and displaying
frequency on OLED display just like the main program. The button enables disabling the
sound from the receiver board.

| could not enclose proof of the operation of the program as it is a sound project.

Below is the schedule for MTC and Final evaluation:

FINAL:

1. Playing square wave sound by blocking light from the light sensor

2. Sound frequency is dependent on accelerometer reading (rotating the board changes
pitch)

3. OLED displays currently played frequency in Hz

4. Zigbee communication between another board which will play sound simultaneously,
but an octave lower

5. Button switches mode between continous pitch and musical scale

MTC:
light sensor, OLED, accelerometer+sound

16



